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Abstract .  W e  investigate the one-dimensional BEG (BlumeEmery-Griffiths) model 
with Kawasaki dynamics, using domainwall arguments (DWA) and Monte Carlo 
simulations (MCS) (conventional and Gillespia algorithm), a f t a  a quench from a 
disordered state to low temperatures. W e  observe that this model exhibitr domain 
scaling behaviour, controlled by a universal exponent ( z  = f ) as in other dimensions 
for model B. However. we find also that the critical exponent I is not universal 
and depends on the coupling constants of the Hamiltonian. The results of DWA are 
consistent with t h e e  of MCS. 

1. Introduction 

The problem of the critical dynamics in king-like systems has been the subject of many 
studies in recent years. The dynamic scaling hypothesis states that the relaxation time 
T of a system near criticality is related to the correlation length E by [l] 

T - ( 2 .  (1) 

This exponent is typically less universal than the thermodynamic exponents, but nev- 
ertheless in dimensions greater than one z appears to depend on a small number of 
further attributes of the dynamics, in particular conservation laws. However, in one 
dimension it is now well known that the value of z may be less universal, depend- 
ing upon ratios oi  coupiing constants within the Iiamiiionian and specific choices oi 
rates (with the same conservation laws) [2]. The origin of this non-universality is 
that  the critical temperature for these models is zero (T, = 0) and the rates present 
Arrheniuelike singularities in this limit, arising from non-universal energy barriers. 

By virtue of the fact that T, = 0, the critical dynamics in one-dimensional models 
is directly related to the problem of domain growth after sudden cooling (quenching) 
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from a high to  low temperature, where a characteristic domain L size scales with time 
t according to the relation 

J F F Mendes et  ol 

L - t=. (2) 

It  has been found that the exponent I controlling'this growth in one dimension is the 
same as in higher dimensions (31, being $ for non-conserved order parameter 141 and 
1 TA. .-,."ma-.,d A.,"=m;na 16 

The problem of reconciling the non-universal dynamic critical exponent with the 
universal growth exponent has recently been studied by two of the authors [TI. They 
find a relation between the two exponents and the energy barriers present in the 
system. However, in the case of spin-exchange dynamics, the widely accepted value 
of z for a system with spatially modulated coupling constants is inconsistent with 
thir theory, implying either a much mnre r.om.p!ex rca!ing theory, with perhaps two 
relevant relaxation times, or a non-universal value for I. 

The BEG model presents an interesting extension to the king model, in that there 
are two relevant order parameters and several distinct relaxation times, corresponding 
to different ordering processes. The critical dynamics of the one-dimensional BEG 
model with Glauber dynamics has been the subject of a recent publication by two of the 
authors 181. .. The results of Monte Carlo simulations were found to he in good agreement 
with physical 'domain-wall' arguments, with a non-universal critical exponent z being 
a function of the coupling constants of the Hamiltonian. 

In this paper, we study the spin-exchange ('Kawasaki' [9]) dynamics of the one- 
dimensional BEG model. We anticipate that some of the controversies relating to 
the z and I exponents in the king case will be resolved by studies of this system. 
Monte Carlo measurements of the z exponent in systems with such pathological critical 
slowing-down ( z  2 5 )  have been made feasible by the use of an unconventional Monte 
Carlo algorithm. 

The paper is organized in the following way. After defining the Hamiltonian and 
the rates for the Kawasaki model, we present the analytic results by domain-wall 
arguments [lo, 111 for both domain growth and critical dynamics. A scaling theory 
interpretation is presented. The results of domain-wall arguments are compared and 
agree with those from the Monte Carlo simulations. 

Rl 
&"I *"I.OL.L ,*Y YJL'"...L*Y L Y ,  "1' 

2. The model 

The BEG model, initially proposed by Blume el nl [12] for the study of the He3-He4 
A transition, has been investigated extensively as an example exhibiting both first- 
and second-order phase transitions, as has been the effect of the single-ion anisotropy 
energy which affects the phase transition of this model. Here, we consider the one- 
dimensional case defined by the Hamiltonian 

!3! 

where N is the number of spins and ui = f1 ,O.  
This model is characterized by two order parameters, the magnetization, m = (ui) ,  

and the quadrupolar average, q = (U,?). This model obviously does not have a finite 
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Figure i. The phase diagram ior the one-dimension4 BEti modei. 

critical temperature; however, a t  T = 0 the ferromagnetic system ( J  > 0) is character- 
ized by different types of ordering, with the ground-state properties being a function of 
the coupling constants of the Hamiltonian. Essentially one finds four different regions 
(figure 1); the first one (I) ( 2 K  + 2.7 - D > 0, K + J - D > 0) is characterized by 
a long-range ferromagnetic order a t  low temperatures, with spin domains in U; = 1 
and ui = -1 states. In this region the only correlation length (typical measure of 
the length size) that  diverges is the one associated with the correlations of the order 
parameter m ( (uiuj ) ) ,  and behaves 

L1 ~ e-2J(1 + e-(2K-D)), (4) 

The second region (ii) j’2K+2J-D < 0, D < uj,  is characterized at iow temperatures 
by alternative domains of U, = 0 and Iuil = 1, with only the correlation length 
associated with the correlations of the q order parameter ( ( ( U ;  - (ui)’)(u; - ( u , ) ~ ) ) )  
diverges. In region (111) ( K  - D < - J ,  D < 0), the paramagnetic region, all spins are 
in the state ui = 0 and no divergence of the correlation length is observed. Region 
(IV) ( K  - D = - J ,  K > - J )  is a tricritical line where the two correlation lengths <,,, 
and E, diverge. At low temperatures both lengths diverge in the same way: 

). (5) -ZJ(1 + e-(K-3J)/2 E,!, - e 

This spin system interacts with a heat bath allowing spin flips. We consider here 
the case of the spin-exchange dynamics [9], where processes can only occur if the two 
nearest-neighbour spins are in different states. This system is described by a master 
equation for the spin-exchange dynamics in the conventional way: 
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Here fii,i+l is an operator that  exchanges the spins ui and u ~ + ~ .  The condition of 
detailed balance is insufficient to constrain the choice of the transition probabilities 
Wi = W ( U ~ , U , + ~  -+ u ~ + ~ ,  ui )  fully. We adopt the following choice: 

w . - l  1 -  2 [ l - t a n h ( y ) ]  

K 2 - -(Ui - 
2 

tanb ( 1  - - (u i -  

- 

- Ui+2) 

where f(ui, ui+J is a factor that  is zero when ui and ui+l are in the same state, and 
one in all other cases. 

3. Domain-wall arguments 

li is usudiy iiiipossibie io soive equation (6) anaiyiicaiiy. iiowever, the study or’ 
domain-wall motion [lo,  111 provides a simple analytical approach which has been very 
successful in predicting both the x [6] and the z exponent in some one-dimensional 
models. First, the DWA were thought to give a lower bound to the critical exponent, 
but in fact in some cases it gives the correct value, principally in the case of homoge- 
neous chains [13]. This argument is based on a physical description of the long-time 
behaviour of the onedimensional kinetic models. We know that the correlation length 
diverges when the temperature goes to zero. Near T = 0 the system splits into large 
domains of type I+’, ‘-’ and ‘0’. 

3.1. Domain growth x exponent 

After a rapid quench from high to low temperature, the domains are initially much 
smaiier than the characteristic equiiibrium size (- <j. Tnese domains wiii grow by 
the nucleation of mobile domains of size one, which then perform random walks until 
they meet a neighbouring domain wall; the domains themselves therefore perform 
random walks, until they coalesce with a neighbouring domain of the same type. In 
the BEG model, we have three types of domain (0, +1 and - l ) ,  though by symmetry 
the domains of ‘+’ will have the same characteristic size as domains of ‘-’. 

We shall first discuss the domains of ‘5’ in the absence of ‘0’. This is exactly the 
same as the pure king case, and has been discussed for for the case of domain growth 
by Cornell et a1 [6] after arguments originally by Cordery et a1 [ l l ] .  A single spin is 
nucleated from a domain wall (activation energy 4 4 ,  and then performs a random 
walk until it either returns to the original domain wall or i t  meets another domain of 
the same type (with probability 1/L,  where L is the characteristic size of domains). 
The domain needs a number proportional to L2 of the latter type of process to be 
annihilated; the typical decay time for such a domain is therefore - L3. The density 
of domains (- 1/L) therefore decays like t - 1 / 3 ,  and so the domain size scales like 

\ 
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The BEG model is complicated by the fact that we will in general have domains 
of ‘0’ as well as ‘k’. The domain walls between ‘+’ and I - ’  domains typically have a 
greater activation energy than those between ‘0’ and I * ’ ,  Therefore, the domains of 
‘0’ will grow much more rapidly than the domains of ’hl’. Moreover, the processes 
that lead to annihilation of domains of type ‘f’ are affected by the presence of dc- 
mains of ‘0’ between them. However, in the scaling limit this merely leads to both 
types of domain having a length that scales according to (a), although with different 
:te;r,~z;atu;~-dziizndeiit; ioiistaats of piopoitioiiakjj. The t expoiieiii is theiefoie 
equal to i, irrespective of the relative values of these energy barriers. These constants 
of proportionality will, however, affect the z exponent. 

9.2. Critical z ezponent 

The arguments in the previous subsection may be extended togive the dynhmic critical 
exponent by recognizing that characteristic equilibration processes are merely domain 
annihilation on a length scale of order <. In principle, near equilibrium we also have 
to take into account processes that lead to creation of domains, but these must in fact 
have the same scaling behaviour [6]. The characteristic relaxation time is therefore 

I exp(B’\)E3 (4) 

where A is the activation energy of the slowest process. is the correlation length 
appropriate to the order parameter that  becomes critical; in the BEG model there is 
only one correlation length that diverges at a given point in parameter space (on the 
tricritical line, both cq and E, diverge, but both diverge in the same way, so there is 
only one length scale). 

In the case of the BEG model with three states, we have then three different kinds 
of domains, and in contrast to the case of the Ising model, we  have to compare rates 
in different configurations, to identify the slower processes. Thus, looking to region 
I (see figure l ) ,  three different subregions C1, C2 and C3 with different values of L 
appear, depending on the value of the rates and the correlation length. In subregion 
C1 ( D  > 2 K )  the correlation length behaves like < - e2J+2K-D at low temperatures 
and the large rates correspond to walls between domains of ‘+’ and ‘-’ spins so 
A = 45. Using result (9), we obtain the values for the z exponent quoted in table 
1. In subregion C2 (D < 210,  < - e’’, and the process that dominates is associated 
with the + + +/ - -- wall, so again A = 45. If IC < 3J we obtain z = 5 (table 
1). In subregion C3 ( K  > 35) the rates for domains involving zeros dominates, so 
A = ( J  + I ( )  and we obtain the result for 2, again plotted in table 1. 

Table 1. Vdues of the critical z exponent obtained by the domain-wall method in 
different subrepjons of the phase space. 

Region Subregion I exponent 

I A1 3 + 45/(ZJ + 2h’ - D) 
A2 5 
A3 3 +  ( J + K ) / 2 J  

IV B1 3 + S J / ( J  + h’) 
BZ 3 +  ( J + K ) / Z J  
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In region IV, we obtain two different regions E l  and E2, corresponding respectively 
Proceeding in the same way as to K < 35 (( - eZJ) and Ii > 35 (E  - 

before we obtain the results plotted in table 1 for the z exponent. 

4. Monte Carlo simulations 

4.1. Algorifhm 

The Monte Carlo simulations were carried out with two different algorithms. The first 
one was based on the conventional Monte Carlo algorithm, and is useful only for the 
cases of small correlation length and z exponent. In other cases (larger values of the 
correlation length and z exponent) the appropriate simulation method is the 'minimal 
process method' also called 'Gillespie algorithm' [14]. The system possesses large 
activation energies, and so it will spend long periods of time inactive. The Gillespie 
algorithm eliminates these dead periods of time in the simulation, and so under these 
conditions this algorithm will he much more efficient than the conventional one. This 
means that we can simulate the system at temperatures very close to  zero, where the 
torrelation length ( becomes very large (but always smaller than the system size), and 
the CPU time does not increase greatly even for large values of z ( z  - 6,7). 

The principle behind the Gillespie algorithm is to determine the nezt process that 
will occur in a stochastic system, together with the waiting time. The probability 
that a given process will occur next is proportional to the transition rate p ( i )  for that 
process, whereas the actual waiting time is exponentially distributed, with character- 
istic time equal to the inverse total transition rate. The hook-keeping necessary to 
perform this updating procedure is much slower than the code necessary to test one 
given flip process in the conventional algorithm, and so the Gillespie algorithm is only 
more efficient if the probability per test of a spin flip is very small. 

The algorithm consists of the following few steps. 
Step  1 (init ialization).  At time t = 0, generate an initial configuration (in this 

particular case, randomly, with equal probability for the three states). Classify the 
possible 'processes' (in our case, nine) that can occur, where each 'process' is charac- 
terized by a given energy change. From the Configuration, the n(i) sites at  which a 

Step  2. For each process type (i) we calculate the product of the number n(i) of 
sites where a process of this type can occur and the probability per unit time p ( i )  
associated with this process type. 

At is 
calculated in such way that is distributed with probability density 

.._̂ "̂ ^̂  ; -"., ,"L--l""- ".a c+nmll 
&,""'.c4,0 "I ' J y c  L 'LL'LJ vmnc y1mcc """Lb". 

Step  9. Determine the time step A t  for the next transition at t + At. 

Pr(At)  = Re-("Ai) (10) 

where 

i=1 

We therefore determine At by 

1 
R A t = - - l o g ( l - r )  
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where r is a random number with equal probability in 0 < r(1. 
Step 4. Choose the process type according the probability rates [p(i)] .  This is 

implemented by choosing a second random number (r) uniformly distributed in [0,1], 
and setting an auxiliary variable A to  zero. Then, for all possible processes, while 
A < r, then A -+ A + (n( i )p( i ) ) /R.  The process i is chosen when A is bigger than 7. 

The specific site at which the process (of type i) takes place is chosen randomly from 
the n(i) possibilities. 

Step 5. Update the spins, and according to  the new configuration update the lists 
of sites a t  which the processes can occur. After, return to step 2, unless the final time 
has been reached. 

4.2. Scaling theory 

We will assume that the correlation function C(r,t) = (uOu,), after a transient time 
t o ,  acquires the expected scaling form in the critical region: 

In one dimension this reduces to F(z,y), because = 1. Here E is the correlation 
length and z is the dynamic critical exponent. 

In the domain growth scaling region, ( t /EZ < l), the correlation function is a 
function of one scaling variable (r/L({, t ) )  only, where L is the characteristic domain 
length. This implies that F(u ,  u)"%G(u/@(u)). We define 

i = (1  - C(l , t ) ) - l  (14) 
which is a useful definition of domain length even out of the domain growth region. 
With this assumption and postulating that (1 -C(r, t))(r'%-or/L, which is equivalent 
to Porod's law [15], one finds that G ( W ) " ~ ~ (  1 - w ) .  Hence, substituting the form for 
C in terms of G in (14), we find, for > 1, 

This is our main result, because is from this relation that we obtain the dynamic 
critical z exponent. However, we observe that we have to add a correction term to 
the expression oi L([,  i), o i  the form 

- 

We obtain a good fit for Monte Carlo results. The correction term is a consequence 
of the fact that the asymptotic regime is constrained by 1 < L < <, and so does 
not strictly exist at finite temperature. This is in contrast to the case d > 2, where 
average domain size has no upper bound, and so the scaling region is always obtained 
as t + CO. The scaling function takes the form @(U) = U', where the domain growth 
exponent I takes the value 5 according to the simulations. Figures 2 and 3 show part 
of the linear regime of L ( t )  against t Z ,  with I = f .  This value is confirmed by the 
linearity of the plot over more than two decades in time. The continuation of the 
straight line of the fit does not match in the origin, due to the correction term. A plot 
oi the intersection point with the abscissae axis against ii( gives a good fit, which 
confirms the form of the correction term. We also see from the results of figures 2 and 
3, for two different values of z ,  and others not presented here, that the I exponent is 
universal, in contrast to the z exponent which we study next. 
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t In 

Figure 2. The average domain length L(t)  as a function of t1I3,  corresponding to 
the point B in the phse  space. This corresponds to part of the scaling region. 

0.99 1 

0.67 f= 

t 

Figure 3. The average domain length L(t) as a function of t1I3,  corresponding to 
the point F in the phase space. This corresponds to part of the scaling region. 

4.3.' Results for the z ezponenl 

Monte Carlo simulations were performed for lattice size of between N = 1024 and 
N = 16384 spins, with periodic boundary conditions. The results are not signifi- 
cantly affected by finite-size effects, because the largest correlation lengths that were 
used never exceed i U U  iattice units. 'The resuits are averaged over iiJU independentiy 
generated initial configurations and seeds for the random number generator. The ran- 
dom number generator that we used was the well-known R250 of Kirkpatrick and Stoll 
1161. The CPU time expended for all the simulations was several hundred hours on 
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Apollo Workstations 400 and 10000. 
Different points in the phase diagram (figure 1) were simulated (A,  B, D and F) 

and the corresponding values for the z exponent were calculated in the following way. 
We simulated the system for different temperatures, where the the correlation 

length took the values between 30 and 90. From the simulations we obtained the  
value of domain size L as a function of t .  We then plotted curves of I(<, t )  against 
.5(t/e)'l3 for several trial values of z ,  the correct value of z being the one for which the 
different curves match, by virtue of (15). This method of finding I is very accurate, 
since a single change of the order 0.1 in z put  the curves out of scaling. The error bars 
in z are estimated from the subjective quality of fit for different trial values of z .  

Figure 4. Scaling of different curves L ( t )  against C ( ( / t ' ) ' / 3  corresponding to dif- 
ferent values of the correlation length. The value of I here is 5.0 and corresponds to 
the point B in the phMe space. 

In figures 4 and 5 we plot L(t) against < ( t / ( ' ) ' / 3  for three different values of .5 
and z = 5.0 0.1 and 6.0 f 0.1, respectively, corresponding in the phase space to the 
points B and D. The other points simulated were A and F and the values obtained 
were 4.95 & 0.1 and 6.0 i 0.1, respectively. 

5. Conclusion 

In this paper we have studied the one-dimensional BEG model with spin-exchange 
dynamics. This model presents a rich ground-state phase diagram as a function of 
the constant couplings of the Hamiltonian. We have studied the dependence of the 
domain growth and critical dynamics exponents on this phase space. 

Physical domain-wall arguments predict the value I = 5 for the domain growth 
exponent, which is the same as for the king model with order-parameter conserving 
dynamics, This result is in good agreement with the results of our Monte Carlo sim- 
ulations. These arguments also predict non-universal values for the dynamic critical 
exponent. We have found that,  within the framework of a scaling theory for this 
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Figure 5 .  Scaling of different curves L ( t )  against < ( E / t ' ) ' / 3  corresponding to dif- 
ferent values of the correlation length. The value of I here is 6.0 and corresponds to 
the point D in the phme space. 

model, which assumes that there exists only one relevant characteristic time, these 
predictions appear to be correct. The presence of more than one divergent time in 
this model is therefore irrelevant a t  sufficiently long times. 

An analogous scaling theory bas previously been used t o  obtain the relationship 
between the growth exponent and dynamic critical exponent for the case of the Ising 
model with alternating coupling constants under Glauber dynamics [7]. In fact, a 
scaling theory of this type will always predict the same relation between exponents 
as the domain-wall arguments, since it assumes that the dynamics is controlled by 
only one energy barrier. The case of the alternating-bond Ising chain with Kawasaki 
dynamics is now being studied to clarify the discrepancy between the results of domain- 
wall arguments [lo] and the real space renormalizatiou group [17]. 
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